Prediction accuracy for a simulated maternally affected trait of beef cattle using different genomic evaluation models.

نویسندگان

  • D A L Lourenco
  • I Misztal
  • H Wang
  • I Aguilar
  • S Tsuruta
  • J K Bertrand
چکیده

Different methods for genomic evaluation were compared for accuracy and feasibility of evaluation using phenotypic, pedigree, and genomic information for a trait influenced by a maternal effect. A simulated population was constructed that included 15,800 animals in 5 generations. Genotypes from 45,000 SNP were available for 1,500 animals in the last 3 generations. Genotyped animals in the last generation had no phenotypes. Weaning weight data were simulated using an animal model with direct and maternal effects. Additive direct and maternal effects were considered either noncorrelated (formula in text) or negatively correlated (formula in text). Methods of analysis were traditional BLUP, BayesC using phenotypes and ignoring maternal effects (BayesCPR), BayesC using deregressed EBV (BayesCDEBV), and single-step genomic BLUP (ssGBLUP). Whereas BayesCPR can be used when phenotypes of only genotyped animals are available, BayesCDEBV can be used when BLUP EBV of genotyped animals are available, and ssGBLUP is suitable when genotypes, phenotypes, and pedigrees are jointly available. For all genotyped and young genotyped animals, mean accuracies from BayesCPR and BayesCDEBV were lower than accuracies from BLUP for direct and maternal effects. The differences in mean accuracy were greater when genetic correlation was negative. Gains in accuracy were observed when ssGBLUP was compared with BLUP; for the direct (maternal) effect the average gain was 0.01 (0.02) for all genotyped animals and 0.03 (0.02) for young genotyped animals without phenotypes. Similar gains were observed for 0 and negative genetic correlation. Accuracy with BayesCPR was affected by ignoring phenotypes of nongenotyped animals and maternal effect and by not accounting for parent average. Accuracy with BayesCDEBV was affected by approximations needed for deregression, not accounting for parent average, and sequential rather than simultaneous fitting of genomic and nongenomic information. Whereas BayesCDEBV presented a considerable bias, especially for maternal effect, ssGBLUP was unbiased for both effects. The computing time was 1 s for BLUP, 44 s for ssGBLUP, and over 2,000 s for BayesC. Greatest computational efficiency and accuracy of genomic prediction for a maternally affected trait was obtained when information from all nongenotyped but related individuals was included and phenotypes, pedigree, and genotypes were available and considered jointly. Increasing the gain in accuracy of genomic predictions obtained by ssGBLUP over BLUP may require an increase in the number of genotyped animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of marker density and trait heritability on the accuracy of genomic prediction over three generations

The aim of this study was to determine the effect of marker density, level of heritability, number of QTLs, and size of training set on the genomic accuracy over three generations. Thereby, a trait was simulated with heritability of 0.10, 0.25 or 0.40. For each animal, a genome with 20 chromosomes, 1 Morgan each, was simulated. Different marker densities (2000, 4000 and 6000 markers) and 400 an...

متن کامل

اهمیت خویشاوندی ژنتیکی و رکورد فنوتیپی بر صحت ژنومی داده‌های جانهی شبیه‌ سازی شده با استفاده از مدل های حیوانی در حضور اثرات متقابل ژنوتیپ و محیط

The objective of this study was to investigate the role of genetic relationships between training and validation set with considering different ratio of phenotypic records of training set on accuracy of genomic prediction via animal models containing genotype × environment interactions in simulated imputation data. For this purpose, four different scenarios using 15k density containing differen...

متن کامل

The Impact of Different Genetic Architectures on Accuracy of Genomic Selection Using Three Bayesian Methods

Genome-wide evaluation uses the associations of a large number of single nucleotide polymorphism (SNP) markers across the whole genome and then combines the statistical methods with genomic data to predict the genetic values. Genomic predictions relieson linkage disequilibrium (LD) between genetic markers and quantitative trait loci (QTL) in a population. Methods that use all markers simultaneo...

متن کامل

Effect of Markers Effect Estimation Methods, Population Structure and Trait Architercture on the Accuracy of Genomic Breeding Values

This study aimed to investigate the  effect  of  the method of estimating the effects of markers , QTLs distribution, number of QTLs, effective population size and trait heritability on the accuracy of genomic predictions. Two effective population sizes, 100 and 500 individuals, were simulated by QMSim software. A 100 cM genome including one chromosome was simulated where 500 SNPs and two diffe...

متن کامل

Genomic prediction with parallel computing for slaughter traits in Chinese Simmental beef cattle using high-density genotypes

Genomic selection has been widely used for complex quantitative trait in farm animals. Estimations of breeding values for slaughter traits are most important to beef cattle industry, and it is worthwhile to investigate prediction accuracies of genomic selection for these traits. In this study, we assessed genomic predictive abilities for average daily gain weight (ADG), live weight (LW), carcas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of animal science

دوره 91 9  شماره 

صفحات  -

تاریخ انتشار 2013